Performance Evaluation of WordNet-based Semantic Relatedness Measures for Word Prediction in Conversational Speech

نویسنده

  • Michael Pucher
چکیده

The recognition of conversational speech is a hard problem. Semantic relatedness measures can improve speech recognition performance when using contextual information, as Demetriou [5] has shown. The standard n-gram approach in language modeling for speech recognition cannot cope with long distance dependencies [4]. Therefore J. Bellegarda [2] proposed combining n-gram language models, which are effective for predicting local dependencies, with latent semantic analysis for long distance dependencies. WordNetbased semantic relatedness measures can be used for word prediction using long distance dependencies, as in these examples from our experiments:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WordNet-based Semantic Relatedness Measures in Automatic Speech Recognition for Meetings

This paper presents the application of WordNet-based semantic relatedness measures to Automatic Speech Recognition (ASR) in multi-party meetings. Different word-utterance context relatedness measures and utterance-coherence measures are defined and applied to the rescoring of N best lists. No significant improvements in terms of Word-Error-Rate (WER) are achieved compared to a large word-based ...

متن کامل

Automatic Construction of Persian ICT WordNet using Princeton WordNet

WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Using WordNet-Based Context Vectors To Estimate The Semantic Relatedness Of Concepts

In this paper, we introduce a WordNetbased measure of semantic relatedness by combining the structure and content of WordNet with co–occurrence information derived from raw text. We use the co–occurrence information along with the WordNet definitions to build gloss vectors corresponding to each concept in WordNet. Numeric scores of relatedness are assigned to a pair of concepts by measuring the...

متن کامل

Fast Semantic Relatedness: WordNet: : Similarity vs Roget's Thesaurus

A Measure of Semantic Relatedness (MSR) automatically determines how close two words are in meaning. MSRs are used in such Natural Language Processing (NLP) problems as word-sense disambiguation or text summarization. To solve such problems may require millions of relatedness scores, but MSR run-time, clearly a major concern, has rarely been considered in NLP research. To evaluate an MSR, one o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004